Parametric and Polar Equations Review

Name_____

1. Fill in the table and sketch the parametric equation for t [-2,6]

Problems 2 - 10: Eliminate the parameter to write the parametric equations as a rectangular equation.

2. $x = \frac{1}{t-2}$ y = 4t + 53. x = 6 - t $y = \sqrt{3t - 4}$ 4. $x = \frac{1}{2}t + 4$ $y = t^3$

5.
$$x = 3 \csc t$$
6. $x = 4 \sin (2t)$ 7. $x = \cos t$ $y = 3 \cot^2 t$ $y = 2 \cos (2t)$ $y = 2 \sin^2 t$

8. x = 4 sec †	9. x = 4 + 2 cos †	10. x = -4 + 3tan ² t
y = 3 tan t	y = -1 + 4 sin t	y = 7 - 2 sec t

Write two new sets of parametric equations for the following rectangular equations. 11. $y = (x + 2)^3 - 4$ 12. $x = \sqrt{y^2 - 3}$

- 13. For the parametric equations x = t and $y = t^2$
 - a) Sketch the graph.
 - b) Graph x = t 1 and $y = t^2$. How does this compare to the graph in part (a)?
 - c) Graph x = t and y = $t^2 3$. How does this compare to the graph in part (a)?
 - d) Write parametric equations which will give the graph in part (a) a vertical stretch by a factor of 2 and move the graph 5 units to the right. (Hint: Verify on your calculator!)
- 14. Do the following sets of parametric equations cross at the same time so they collide or do their paths just intersect? Justify your answer.
 - a) $x_1 = 3 t$ and $x_2 = t + 19$ $y_1 = t^2 - 60$ $y_2 = t + 12$ b) $x_1 = 3 - t$ and $x_2 = 3 - 2t$ $y_1 = 2t + 1$ $y_2 = 2 + 3t$ c) $x_1 = 4t$ and $x_2 = 5t - 6$ $y_1 = \frac{1}{2}t + 5$ $y_2 = t + 2$
- 15. Find the values of t that generated the graph described by the parametric equations: x = t - 1 and y = $\frac{1}{2}$ t + 2

t	х	у
	-5	0
	-3	1
	-1	2
	1	3
	3	4

Describe your thought process in solving for t.

Plot the point given in polar coordinates and find two additional polar representations of the point, using $-360^\circ < \theta < 360^\circ$.

16.
$$(4, 150^{\circ})$$
 17. $(-\frac{1}{2}, -210^{\circ})$

Find the corresponding rectangular coordinates for the point given in polar coordinates. 18. $(5, -\frac{\pi}{6})$ 19. (-2, 135°)

Find the polar coordinates for $0 < \theta < 360^{\circ}$. Pay attention to the quadrant! 20. (-4, -4) 21. (2, $-2\sqrt{3}$)

Convert the rectangular equation to polar form. (solve for r) 22. $x^2 + y^2 - 6y = 0$ 23. 5x + 7y = 12

Convert the polar equation to rectangular form. 24. r = 4 sin θ 25. r = $\frac{4}{1-\cos\theta}$

26. ECCENTRICITY - Find the eccentricity and identify the conic section

a.
$$r = \frac{7}{3 - \frac{2}{5} \cos \theta}$$
 b. $r = \frac{4}{4 + \frac{1}{4} \sin \theta}$

 $33. \quad r = 5 + 4\cos\theta$

COMPLEX NUMBER PRACTICE

35. Write the complex numbers in polar form (trigonometric form)

- (a) z = 2 2i
- (b) $w = -1 \sqrt{3i}$
- (c) $y = 4\sqrt{3} + 4i$
- (d) $x = -\sqrt{5} + \sqrt{5i}$
- 36. Using the complex numbers w-z above, simplify the following using polar form.
 - a. $z \cdot w$ b. $x \div w$ c. $y \cdot x$ d. z^7
 - **e**. w⁴
- 37. Write in simplified polar form.
 - a. $(3+2i)^{30}$ b. $(2-6i)^{21}$

EXTRA PRACTICE WITH POLAR

Convert to rectangular coordinates:Convert to polar coordinates:38. $\left(-5, -\frac{5\pi}{6}\right)$ 39. $\left(-6, 6\sqrt{3}\right)$; $r \le 0$ and $0 \le \theta \le 2\pi$

Change to a rectangular equation: Change to a polar equation:

40. $r = -3\cos\theta$ **41.** x + y = 2x

Obtain the rectangular equation by eliminating the parameter.

42. x = 3t - 7, y = -6t + 4**43**. $x = -3\cos\theta$, $y = 3\sin^2\theta$ 44. Find the interval for θ that creates: (Use graphs if needed)

a) The second petal of $r = 4sin3\theta$

b) The inner loop of $r = 6\cos\theta + 3$

c) The outer loop (not inner) of $r = -5cos\theta + 1$

