Name \qquad

1. Fill in the table and sketch the parametric equation for $t[-2,6]$

$$
\begin{aligned}
& x=\sqrt{t^{2}+1} \\
& y=2-t
\end{aligned}
$$

t	x	y
-2		
-1		
0		
1		
2		
3		
4		
5		
6		

Problems 2-10: Eliminate the parameter to write the parametric equations as a rectangular equation.
2. $x=\frac{1}{t-2}$
$y=4 t+5$
3. $x=6-t$
$y=\sqrt{3 t-4}$
4. $x=\frac{1}{2} t+4$
$y=t^{3}$
5. $x=3 \csc t$
$y=3 \cot ^{2} \dagger$
6. $x=4 \sin (2 t)$
$y=2 \cos (2 t)$
7. $x=\cos t$
$y=2 \sin ^{2} t$
8. $x=4 \sec t$
$y=3 \tan t$
9. $x=4+2 \cos t$
$y=-1+4 \sin t$
10. $x=-4+3 \tan ^{2} t$
$y=7-2 \sec \dagger$

Write two new sets of parametric equations for the following rectangular equations.
11. $y=(x+2)^{3}-4$
12. $x=\sqrt{y^{2}-3}$
13. For the parametric equations $x=\dagger$ and $y=\dagger^{2}$
a) Sketch the graph.
b) Graph $x=t-1$ and $y=t^{2}$. How does this compare to the graph in part (a)?
c) Graph $x=\dagger$ and $y=t^{2}-3$. How does this compare to the graph in part (a)?
d) Write parametric equations which will give the graph in part (a) a vertical stretch by a factor of 2 and move the graph 5 units to the right. (Hint: Verify on your calculator!)
14. Do the following sets of parametric equations cross at the same time so they collide or do their paths just intersect? Justify your answer.
a) $x_{1}=3-\dagger$ and $x_{2}=\dagger+19$
$y_{1}=t^{2}-60 \quad y_{2}=t+12$
b) $x_{1}=3-t \quad$ and $\quad x_{2}=3-2 \dagger$
$y_{1}=2 t+1 \quad y_{2}=2+3 t$
c) $x_{1}=4 t \quad$ and $\quad x_{2}=5 t-6$
$y_{1}=\frac{1}{2} t+5 \quad y_{2}=t+2$
15. Find the values of t that generated the graph described by the parametric equations:

$$
x=t-1 \text { and } y=\frac{1}{2} \dagger+2
$$

t	x	y
	-5	0
	-3	1
	-1	2
	1	3
	3	4

Plot the point given in polar coordinates and find two additional polar representations of the point, using $-360^{\circ}<\theta<360^{\circ}$.
16. $\left(4,150^{\circ}\right)$
17. $\left(-\frac{1}{2},-210^{\circ}\right)$

Find the corresponding rectangular coordinates for the point given in polar coordinates.
18. $\left(5,-\frac{\pi}{6}\right)$
19. $\left(-2,135^{\circ}\right)$

Find the polar coordinates for $0<\theta<360^{\circ}$. Pay attention to the quadrant!
20. $(-4,-4)$
21. $(2,-2 \sqrt{3})$

Convert the rectangular equation to polar form. (solve for r)
22. $x^{2}+y^{2}-6 y=0$
23. $5 x+7 y=12$

Convert the polar equation to rectangular form.
24. $r=4 \sin \theta$
25. $r=\frac{4}{1-\cos \theta}$
26. ECCENTRICITY - Find the eccentricity and identify the conic section
a. $r=\frac{7}{3-\frac{2}{5} \cos \theta}$
b. $r=\frac{4}{4+\frac{1}{4} \sin \theta}$

Graph
27. $r=6 \sin 2 \theta$

29. $r=-8 \cos 2 \theta$

31. $r=8+\sin \theta$

33. $r=5+4 \cos \theta$

28. $r=-7 \cos 3 \theta$

30. $r=8 \sin \theta$

32. $r=5+5 \cos \theta$

34. $r=3+6 \sin \theta$

35. Write the complex numbers in polar form (trigonometric form)
(a) $z=2-2 i$
(b) $w=-1-\sqrt{3 i}$
(c) $y=4 \sqrt{3}+4 i$
(d) $x=-\sqrt{5}+\sqrt{5 i}$
36. Using the complex numbers w-z above, simplify the following using polar form.
a. $z \cdot w$
b. $x \div w$
c. $y \cdot x$
d. z^{7}
e. w^{4}
37. Write in simplified polar form.
a. $(3+2 i)^{30}$
b. $(2-6 i)^{21}$

EXTRA PRACTICE WITH POLAR

Convert to rectangular coordinates:
Convert to polar coordinates:
38. $\left(-5,-\frac{5 \pi}{6}\right)$
39. $(-6,6 \sqrt{3}) ; \quad r \leq 0$ and $0 \leq \theta \leq 2 \pi$

Change to a rectangular equation:
Change to a polar equation:
40. $\mathrm{r}=-3 \cos \theta$
41. $x+y=2 x$

Obtain the rectangular equation by eliminating the parameter.
42. $x=3 t-7, y=-6 t+4$
43. $\mathrm{x}=-3 \cos \theta, \mathrm{y}=3 \sin ^{2} \theta$
44. Find the interval for θ that creates: (Use graphs if needed)
a) The second petal of $r=4 \sin 3 \theta$
$\ldots \theta \leq$ \qquad

b) The inner loop of $r=6 \cos \theta+3$

c) The outer loop (not inner) of $r=-5 \cos \theta+1$

$$
\ldots \quad \leq
$$

