MIDTERM REVIEW PACKET

IM3H

For questions 1-2, perform the given operation. Leave your answers as factored as possible.

1.
$$\frac{6x^2 + 5x - 4}{2x^2 - 17x + 8} \cdot \frac{x^2 - 4x - 32}{12x^2 - 5x - 2}$$
 2. $\frac{3}{x + 2} + \frac{4}{x^2 - 4} - \frac{1}{x^2 - x - 2}$

For questions 3-5, find all the zeros (real & imaginary) of each function.

3.
$$f(x) = 2x^3 - 3x^2 - 11x + 6$$

4. $f(x) = x^4 - 2x^3 - 5x^2 + 8x + 4$

5.
$$f(x) = x^3 + 7x^2 + x + 7$$

6. Write the polynomial function of least degree & with integer coefficients if the zeros occur at 6 and -5 + 2i.

7. Find the value of each of the six trig functions of θ .

8. Find the values of the missing trig functions given $\sin \theta = -\frac{8}{17}$ and $\cos \theta = \frac{15}{17}$.

For questions 9-15, find the exact value of each expression.

9.
$$\tan \frac{9\pi}{2}$$
 10. $\sec \frac{-11\pi}{4}$ 11. $\sin \frac{-35\pi}{6}$ 12. $\cot \frac{19\pi}{6}$ 13. $\sec 510^{\circ}$

14.
$$\sin \frac{3\pi}{2} \tan \left(-\frac{8\pi}{3}\right) + \cos \left(-\frac{5\pi}{6}\right)$$
 15. $\frac{\tan 150^\circ \csc 240^\circ}{\cos 135^\circ - \sin 300^\circ}$

For questions 16-19, graph one period of each function. Fully label your axes!! Use color for your final function!

Integrated Math III Honors

18. $f(x) = 2 \tan 3(\theta - 30^\circ)$

For questions 20-23, prove each identity.

 $20. \ \frac{1}{1-\sin x} = \sec^2 x + \sec x \tan x$

21.
$$\frac{\sec^3 x - \cos^3 x}{\sec x - \cos x} = \sec^2 x + 1 + \cos^2 x$$

22.
$$\tan\left(x + \frac{\pi}{4}\right) + 1 = \sqrt{2}\cos x \sec\left(x + \frac{\pi}{4}\right)$$
 23. $(1 + \tan x)\tan 2x = \frac{2\tan x}{1 - \tan x}$

For questions 24-27, solve each equation in the indicated domain.

24. $2\cot^2 x + 2\cot x = 0$, Domain: $(-\infty, \infty)$ 25. $4\csc^2 \theta + 4\csc \theta + 1 = 0$, Domain: $[0^\circ, 360^\circ)$

26.
$$1 - \cos \theta = -\sin \theta$$
, Domain: $[-180^\circ, 180^\circ)$ 27. $\frac{\tan 10\theta + \tan 50^\circ}{1 - \tan 10\theta \tan 50^\circ} = \frac{\sqrt{3}}{3}$, Domain: $(0^\circ, 90^\circ)$

For triangle questions 28-31, find the specified side or angle. Round your answers to 2 decimal places.

28. In ΔHJK , h = 8, j = 6, $m \angle K = 172^{\circ}$, find k.

29. In $\triangle BAD$, a = 2.897, d = 5.921, $m \angle B = 119^{\circ}$, find b.

30. In ΔPEG , *p* = 12, *e* = 20, *g* = 16, *find m*∠*E*.

31. In $\triangle ABC$, $m \angle A = 40^\circ$, $m \angle B = 60^\circ$, a = 4, find c.

For questions 32-33, find the area of each triangle. Round your answers to 2 decimal places.

32. c = 24 meters, a = 10 meters, $T = 62^{\circ}$ 33. m = 6 feet, d = 16 feet, and b = 18 feet.

For #34-35, write the equation of the polynomial function graphed with lowest degree possible and leading coefficient of 1.

35.)

Midterm Review Packet - page 5

Integrated Math III Honors

For questions 36-40, find all the zeros of the polynomial function.

36. $f(x) = 2x^3 - 2x^2 + 16x + 120$ 37. $f(x) = x^4 - 3x^3 - 2x^2 - 6x - 8$ 38. $f(x) = 216x^3 + 64$

39.
$$f(x) = x^3 + 12x^2 + 21x + 10$$
 40. $f(x) = x^4 + x^3 - x^2 + x - 2$

Write a rational function with the given characteristics.

41.

There are no zeros, a hole exists at x = -3/2, vertical asymptote is at x = 1, and horizontal asymptote is at y = 0.

42. There is a zero at 6, a hole exists at x = -3, no vertical asymptotes, and horizontal asymptote at y = x - 6.

43. The zeros are at -1 and 3 and the vertical asymptote is at x = 0.

Midterm Review Packet – page 6

Graph the function and label the following information. Horizontal Asymptotes can include slant asymptotes.

										4									
											_								_
	н					Н		-		\vdash			Н		н		н	н	-
	н					Н							Н		н		н	н	-
	н		_		H	Н	H	н		\vdash			Н	Н	Н	\vdash	н	Н	-
	н	-	-		H	Н	H	Н					Н	Н	Н	H	Н	Н	-
	н	-	-		H	Н	H	н		\vdash			Н	Н	Н	H	н	Н	-
	н				H	H	H	Н					Н	H	Н	H	Н	Н	
-																			
	Ц					Ц							Ц		Ц	\square	Ц		_
	н					Н							Н		Н		Н		_
	н					Н							Н		Н		Н		_
	н		_			н							Н	Н	н		н		-
	н	-	-	-	Н	н	H	н	-			Н	Н	Н	н	H	н	н	-
	н		-		H	Н	H	н				H	Н	Н	Н	H	н	Н	-
	Н				H	Н	H					Н	Н	Н	Н	H	Н	Н	
	_		_					_			7	_	_					_	
											/								

44. $y = \frac{x^2 + 4x - 5}{x + 1}$

Zeros:	
Vertical Asymptotes:	
Horizontal	
Asymptotes:	
Holes:	
Y-Intercept(s):	
Domain:	
range	

Zeros:	
Vertical Asymptotes:	
Horizontal	
Asymptotes:	
Holes:	
Y-Intercept(s):	
Domain:	
range	

47. Find the volume of the solid formed when the rectangle shown is rotated about Midterm Review Packet – page 7 Integrated M

Integrated Math III Honors

a. x=-3

b. y=-2

48. Find the volume of the solid formed when the triangle is rotated about

a. x= -1.

b. y = 5.

49. Find the volume of the solid formed when the trapezoid is rotated about

- a. y=4
- b. x= -3

50. Find the volume of a hollow sphere, where the outter diameter is 15cm and the length of the inner diameter is 7cm.

51. Find the volume of the frustum with $r_1 = x + 3$, $r_2 = 2x - 1$, and h = 4x.

- 52. Is 3 i a zero to the function $g(x) = x^3 10x^2 + 34x 40$?
- 53. At 1:00pm (13:00) high tide was at 4 feet, at 8:00 pm (20:00) low tide was -1 feet. Find the period of the trigonometric function that would model the tides.

54. Simplify

$$\frac{3+\frac{x}{2-x}}{\frac{1}{x}-4}$$

- 55. Factor the following polynomial: $125x^3 8y^6$
- 56. Expand the binomial: $(5y x^3)^5$

57. Divide using long division or unboxing method:

 $\frac{2x^3 - 4x + 512x^3 - 11x^2 + 22x - 15}{x^2 - 4x + 5}$