Midterm Review Packet

For questions 1-2, perform the given operation. Leave your answers as factored as possible.

1. $\frac{6 x^{2}+5 x-4}{2 x^{2}-17 x+8} \cdot \frac{x^{2}-4 x-32}{12 x^{2}-5 x-2}$
2. $\frac{3}{x+2}+\frac{4}{x^{2}-4}-\frac{1}{x^{2}-x-2}$

For questions 3-5, find all the zeros (real \& imaginary) of each function.
3. $f(x)=2 x^{3}-3 x^{2}-11 x+6$
4. $f(x)=x^{4}-2 x^{3}-5 x^{2}+8 x+4$
5. $f(x)=x^{3}+7 x^{2}+x+7$
6. Write the polynomial function of least degree $\&$ with integer coefficients if the zeros occur at 6 and $-5+2 i$.
7. Find the value of each of the six trig functions of θ.

8. Find the values of the missing trig functions given $\sin \theta=-\frac{8}{17}$ and $\cos \theta=\frac{15}{17}$.

For questions 9-15, find the exact value of each expression.
9. $\tan \frac{9 \pi}{2}$
10. $\sec \frac{-11 \pi}{4}$
11. $\sin \frac{-35 \pi}{6}$
12. $\cot \frac{19 \pi}{6}$
13. $\sec 510^{\circ}$
14. $\sin \frac{3 \pi}{2} \tan \left(-\frac{8 \pi}{3}\right)+\cos \left(-\frac{5 \pi}{6}\right)$
15. $\frac{\tan 150^{\circ} \csc 240^{\circ}}{\cos 135^{\circ}-\sin 300^{\circ}}$

For questions 16-19, graph one period of each function. Fully label your axes!! Use color for your final function!
16. $f(x)=2-3 \sec 4(x-\pi)$

17. $f(x)=-1+4 \sin \frac{1}{2}\left(\theta+45^{\circ}\right)$

Midterm Review Packet - page 2
18. $f(x)=2 \tan 3\left(\theta-30^{\circ}\right)$

19. $f(x)=\frac{1}{2} \cot 2\left(x+\frac{\pi}{3}\right)$

For questions 20-23, prove each identity.
20. $\frac{1}{1-\sin x}=\sec ^{2} x+\sec x \tan x$
21. $\frac{\sec ^{3} x-\cos ^{3} x}{\sec x-\cos x}=\sec ^{2} x+1+\cos ^{2} x$
22. $\tan \left(x+\frac{\pi}{4}\right)+1=\sqrt{2} \cos x \sec \left(x+\frac{\pi}{4}\right)$
23. $(1+\tan x) \tan 2 x=\frac{2 \tan x}{1-\tan x}$

For questions 24-27, solve each equation in the indicated domain.
24. $2 \cot ^{2} x+2 \cot x=0$, Domain: $(-\infty, \infty)$ 25. $4 \csc ^{2} \theta+4 \csc \theta+1=0$, Domain: $\left[0^{\circ}, 360^{\circ}\right)$
26. $1-\cos \theta=-\sin \theta, \quad$ Domain: $\left[-180^{\circ}, 180^{\circ}\right)$
27. $\frac{\tan 10 \theta+\tan 50^{\circ}}{1-\tan 10 \theta \tan 50^{\circ}}=\frac{\sqrt{3}}{3}, \quad$ Domain: $\left(0^{\circ}, 90^{\circ}\right)$

For triangle questions 28-31, find the specified side or angle. Round your answers to $\mathbf{2}$ decimal places.
28. In $\Delta H J K, h=8, j=6, m \angle K=172^{\circ}$, find k.
29. In $\triangle B A D, a=2.897, d=5.921, m \angle B=119^{\circ}$, find b.
30. In $\triangle P E G, p=12, e=20, g=16$, find $m \angle E$.
31. In $\triangle A B C, m \angle A=40^{\circ}, m \angle B=60^{\circ}, a=4$, find c.

For questions 32-33, find the area of each triangle. Round your answers to $\mathbf{2}$ decimal places.
32. $\mathrm{c}=24$ meters, $\mathrm{a}=10$ meters, $\mathrm{T}=62^{\circ} \quad$ 33. $\mathrm{m}=6$ feet, $\mathrm{d}=16$ feet, $\mathrm{and} \mathrm{b}=18$ feet.

For \#34-35, write the equation of the polynomial function graphed with lowest degree possible and leading coefficient of 1 .
34.)

35.)

For questions 36-40, find all the zeros of the polynomial function.
36. $f(x)=2 x^{3}-2 x^{2}+16 x+120$
37. $f(x)=x^{4}-3 x^{3}-2 x^{2}-6 x-8$
38. $f(x)=216 x^{3}+64$
39. $f(x)=x^{3}+12 x^{2}+21 x+10$
40. $f(x)=x^{4}+x^{3}-x^{2}+x-2$

Write a rational function with the given characteristics.

41.

There are no zeros, a hole exists at $x=-3 / 2$, vertical asymptote is at $x=1$, and horizontal asymptote is at $y=0$.
42. There is a zero at 6 , a hole exists at $x=-3$, no vertical asymptotes, and horizontal asymptote at $y=x-6$.
43. The zeros are at -1 and 3 and the vertical asymptote is at $x=0$.

Graph the function and label the following information. Horizontal Asymptotes can include slant asymptotes.

44. $y=\frac{x^{2}+4 x-5}{x+1}$

45. $y=\frac{x^{2}+5 x+6}{x^{2}-9}$

Zeros:	
Vertical Asymptotes:	
Horizontal	
Asymptotes:	
Holes:	
Y-Intercept(s):	
Domain:	
range	

$46 y=\frac{x^{2}-4}{3 x^{2}-15 x+18}$

Zeros:	
Vertical Asymptotes:	
Horizontal	
Asymptotes:	
Holes:	
Y-Intercept(s):	
Domain:	
range	

47. Find the volume of the solid formed when the rectangle shown is rotated about

Midterm Review Packet - page 7
a. $x=-3$
b. $y=-2$

48. Find the volume of the solid formed when the triangle is rotated about
a. $\mathrm{x}=-1$.
b. $\mathrm{y}=5$.

49. Find the volume of the solid formed when the trapezoid is rotated about
a. $\quad y=4$
b. $x=-3$

								-			
								\bigcirc			
				,				人			
				1				1			
	${ }^{5}$	${ }^{4}$	${ }^{-3}$	${ }^{-2}$	${ }^{-1}$		-		3		

50. Find the volume of a hollow sphere, where the outter diameter is 15 cm and the length of the inner diameter is 7 cm .
51. Find the volume of the frustum with $r_{1}=x+3, r_{2}=2 x-1$, and $h=4 x$.
52. Is $3-i$ a zero to the function $g(x)=x^{3}-10 x^{2}+34 x-40$?
53. At 1:00pm (13:00) high tide was at 4 feet, at $8: 00 \mathrm{pm}(20: 00)$ low tide was -1 feet. Find the period of the trigonometric function that would model the tides.
54. Simplify

$$
\frac{3+\frac{x}{2-x}}{\frac{1}{x}-4}
$$

55. Factor the following polynomial: $125 x^{3}-8 y^{6}$
56. Expand the binomial: $\left(5 y-x^{3}\right)^{5}$
57. Divide using long division or unboxing method:

$$
\frac{2 x^{3}-4 x+512 x^{3}-11 x^{2}+22 x-15}{x^{2}-4 x+5}
$$

