Module 1 Review

Solve the following equations for the unknown variable.

1. 3(2x + 1) = 2(x + 3) + 3x2. 2(2x + 3) + 5(x + 4) = 4(2x + 5) + 8

3. Review Elvira's Task with sticky notes. Module 1.3

Write the equation of the line in slope intercept form. Then graph each line.

4. 3x + 5y = 15

6. 8x + 7y = 56

#8-11. Solve each inequality. Graph the solutions on the number line AND state 3 numbers in the solution set. Show all your work!

$$A = \begin{bmatrix} 7 & 6 \\ 2 & 4 \\ 0 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 5 & 9 \\ 1 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 8 \\ 6 & 9 \end{bmatrix}$$

12. Find B – 3C

13. Find AB

Module 2 Review Homework

For #1 solve each system of equation by graphing:

14. y + x = 5y = -2x + 8

For #15-16, solve each system of equations using the substitution or elimination:

x

15.	y = -x + 15	16.	2x - 3y = 4
	4x + 3y = 38		x + 4y = -9

For #17-18, solve each system of inequalities.

$$18. \quad 2x + 3y \le 12$$
$$y > x - 3$$

- 19. Jason is buying wings and hot dogs for a party. One package of wings costs \$7. Hot dogs cost \$4 per pound. He must spend less than \$40.
 - a. Write an inequality to represent the cost of Jason's food for the party.
 - b. Jason knows that he will be buying at least 5 pounds of hot dogs. Write an inequality to represent this situation.
 - c. Graph both inequalities and shade the intersection.

d. Identify two solutions and justify your answers.

For #20, solve the system of equation using matrix row reduction:

20. 2x - 3y = 4x + 4y = -9

Module 3 Review

Use the given information to state as much as possible about each sequence. Your answer should include: type of sequence, the common difference or common ration, a table of at least 5 terms, a graph, the recursive rule, and the explicit rule.

21. Туре:	X	<u>f(x)</u>	Common difference/ratio:
Recursive rule: $f(1) = 2 \ f(x) = f(x - 1) + 3$			Explicit rule:
22. Type:	X	<i>f</i> (x)	Common difference/ratio:
Recursive rule:			Explicit rule: $f(x) = 3 \cdot 2^x$

23. Type:	X	<i>f</i> (<i>x</i>)	Common difference/ratio:
Recursive rule:			Explicit rule:

24. Туре:	X	f(x)	Common Ratio = $\frac{1}{2}$
	2	20	
Recursive rule:			Explicit rule:
			-

Module 4 Review

For each of the functions find the following information.

26. Find the x-intercept, y-intercept, rate of change of each function and where is f(x) > g(x)?

27. Write an explicit formula to model the number of dots per day.

00		
Day 1	Day 2	Day 3

f(x) =_____

Model the function using the table provided:

Day	Number of Dots

Use your table to create a graph of the function:

28. Bank Plans:

Suppose you worked mowing lawns all summer and earned \$100. Two savings institutions, Linear Luck and Exponential Experiment want you to let them "hold onto your money" for a while.

Linear Luck: This savings plan will add \$100 to your balance for every month that you leave your money in the account.

Exponential Experiment: This savings plan will multiply your balance by 2 every month that you leave your money in their account.

Analyze the plans: Write the explicit function for each account, and decide which account is best at what time

Module 5 Review

Consider the linear graph of f(t) and the nonlinear graph of g(t) to answer questions 9-14. Approximations are appropriate answers.

35. Use the graph to answer the following questions?

- a. Where is the graph increasing?
- b. Where is the graph decreasing?
- c. What is the domain?
- d. What is the range?
- e. Maximum Value?
- f. Minimum Value?
- g. When is f(x) > 0?
- 36. Which of the following relations are functions?
 - {(3,1), (4,5), (5,7), (3,1), (0,0)}
 - {(3,1), (3,5), (3,7), (3,2), (3,0)}
 - {(3,1), (4,1), (5,1), (2,1), (0,1)}
 - {(2,1), (4,5), (7,7), (3,1), (5,0)}

