Module 4

1. $f(x)=2-3 \tan 4\left(x+\frac{\pi}{8}\right)$

2. Find all solutions in the equation in the interval $[0,2 \pi)$.
a. $\csc ^{2} x-\csc x-2=0$
b. $3-\sin ^{2} 3 x+2 \cos 3 x=5$
c. $\sec x \sin x-3 \sin x=0$
d. $3 \cot ^{2} x-1=0$
e. $2 \sin ^{2} 3 x+5 \sin 3 x=3$
f. $2 \tan ^{2} \frac{x}{4}-\tan \frac{x}{4}-6=0$,

3. Find the exact value using a sum or difference formula.

a. $\sin \frac{11 \pi}{12}=$	b. $\quad \cos \frac{11 \pi}{12}=$	$\tan \frac{11 \pi}{12}=$

Evaluate:

10. $\cos ^{-1}\left(\frac{1}{2}\right)=$
11. $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=$
12. $\csc ^{-1}(-\sqrt{2})=$
13. Find $\cos \theta$ if $\cot \theta=\frac{\sqrt{3}}{3}$ and $\csc \theta<0$.
14. Find $\sin 2 x$, if $\csc x=-2$, and $\pi \leq x \leq \frac{3 \pi}{2}$.
15. Find $\cos (a-b)$, if $\cos a=\frac{3}{5}, \sin b=-\frac{5}{13^{\prime}}$, and angle a and b are in the same quadrant.
16. Graph the function:

$$
f(x)=2-3 \sin 4\left(x+\frac{\pi}{8}\right)
$$

17. Graph the function:

$f(x)=4+2 \csc (2 x-\pi)$

18. Find the exact value.
a. $\cos \left(\arcsin \left(\frac{7}{9}\right)\right)$
b. $\sin \left(\arctan \left(\frac{3}{5}\right)\right)$
c. $\arcsin \left(\sin \left(\frac{2}{3}\right)\right)$
19. Find all solutions to the following trig equations.
a. $2 \sin x^{2}-\sin x-2=1$
b. $\cos ^{2} x=1-\sin x$
c. $\sin x-2 \sin x \cos x=0$

Find the exact value without a calculator.

21. $\cos \left(\sin ^{-1}\left(\frac{1}{2}\right)\right)$
22. $\sin \left(\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$
23. $\sin ^{-1}\left(\cos \left(\frac{\pi}{3}\right)\right)$
24. $\cos ^{-1}\left(\sin \left(\frac{\pi}{6}\right)\right)$
25. $\sin ^{-1}\left(\sin \left(\frac{7 \pi}{4}\right)\right)$
26. $\arccos \left(\sin \left(\frac{\pi}{3}\right)\right)$
27. $\sin \left(\tan ^{-1}(\sqrt{3})\right)$
28. $\cos \left(\tan ^{-1}(-1)\right)$
29. $\tan ^{-1}(\cos (\pi))$

Module 5 Graph:

32. $y=\frac{1}{2}^{x} \cdot \sin 2 x$

34. Given that $f(x)=x+1$ and $g(x)=\cos \pi x$, $\operatorname{graph} f(g(x))$

33. $y=-3 x+2+\sin \frac{\pi}{2} x$

35. Given that $f(x)=3 x-4$ and $g(x)=2^{x-1}$ graph $f(g(x))$

For each graph below, write the function graphed and them write the function as a composition of two functions.

36.

Function graphed:

\qquad

Composed functions;
$\boldsymbol{k}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$
$f(x)=$ \qquad

$$
\boldsymbol{g}(\boldsymbol{x})=
$$

37. Given the following functions, find a composition of functions with each feature listed below.
$a(x)=\frac{x-1}{x-2}, b(x)=\log _{2} x, c(x)=|3 x|, d(x)=2 x^{2}+4, e(x)=x-4, f(x)=x^{2}+5 x-4$
a. A composition of functions with a range of $[32, \infty)$
b. A composition of functions with no roots
c. A composition of functions with an asymptote at $x=4$
d. A composition of functions with end behavior: As $x \rightarrow \infty, y \rightarrow 1$
38. Given $f(x)=2 x-3, \quad g(x)=x^{2}-2 x$, and $h(x)=-5 x$. Find $g(\boldsymbol{f}(\boldsymbol{h}(\boldsymbol{x})))$.
39. Given $f(x)=2 x^{3}-9 x^{2}+x+12, \quad g(x)=2 x-3, \quad$ and $\quad h(x)=x+1$.
e. Find $g(x)-f(x)$
f. Find $g(x) \cdot h(x)$
g. Find $\frac{f(x)}{g(x) \cdot h(x)}$
40. Given:
$f(x)=2 x-4$,
$g(x)=\cos \frac{\pi}{4} x$, and
$h(x)=-5 x$
Graph the following:
a. $f(g(x))$
b. $(f+g)(x)$
c. $f \cdot g(x)$
i.

h.

j.

Module 6

Eliminate the parameter to write the parametric equations as a rectangular equation.
41. $x=3 \csc t$
$y=3 \cot ^{2} t$
42. $x=4 \sin (2 t)$
$y=2 \cos (2 t)$
43. $x=\cos t$
$\mathrm{y}=2 \sin ^{2} \mathrm{t}$
44. $x=4 \sec t$
$y=3 \tan t$
45. $x=4+2 \cos t$
$y=-1+4 \sin t$
46. $x=-4+3 \tan ^{2} t$ $y=7-2 \sec t$

Problems 11 and 12: Write two new sets of parametric equations for the following rectangular equations.
47. $y=(x+2)^{3}-4$
48. $x=\sqrt{y^{2}-3}$
49. For the parametric equations $\mathrm{x}=\mathrm{t}$ and $\mathrm{y}=\mathrm{t}^{2}$
a) Sketch the graph.
b) Graph $x=t-1$ and $y=t^{2}$. How does this compare to the graph in part (a)?
c) Graph $x=t$ and $y=t^{2}-3$. How does this compare to the graph in part (a)?
d) Write parametric equations which will give the graph in part (a) a vertical stretch by a factor of 2 and move the graph 5 units to the right. (Hint: Verify on your calculator!)
50. Do the following sets of parametric equations cross at the same time so they collide or do their paths just intersect? Justify your answer.
c) $x_{1}=4 t$ and $x_{2}=5 t-6$
$y_{1}=1 / 2 t+5 \quad y_{2}=t+2$

Plot the point given in polar coordinates and find two additional polar representations of the point, using $-3600<\theta<360$.
51. $(4,150$ ㅇ)
52. $\left(-1 / 2,-210^{\circ}\right)$

Find the corresponding rectangular coordinates for the point given in polar coordinates.

53. $\left(5,-\frac{\pi}{6}\right)$
54. $(-2,135$ - $)$

Find the polar coordinates for $0<\theta<360$. Pay attention to the quadrant!
55. (-4, -4)
56. $(2,-2 \sqrt{3})$

Convert the rectangular equation to polar form. (solve for r)
57. $x^{2}+y^{2}-6 y=0$
58. $5 x+7 y=12$

Convert the polar equation to rectangular form.
59. $r=4 \sin \theta$
60. $r=\frac{4}{1-\cos \theta}$

Graph
61. $r=6 \sin 2 \theta$

62
$r=-7 \cos 3 \theta$

63. $r=8+\sin \theta$

64. $r=5+5 \cos \theta$

65. $r=5+4 \cos \theta$

66. $r=3+6 \sin \theta$

COMPLEX NUMBER PRACTICE

67. Write the complex numbers in polar form (trigonometric form)
(a) $z=2-2 i$
(b) $w=-1-\sqrt{3 i}$
(c) $y=4 \sqrt{3}+4 i$
(d) $x=-\sqrt{5}+\sqrt{5 i}$
68. Using the complex numbers w-z above, simplify the following using polar form.
a. $Z \cdot w$
b. $x \div w$
c. $y \cdot x$
d. z^{7}
e. w^{4}
69. Write in simplified polar form.
a. $(3+2 i)^{30}$
b. $(2-6 i)^{21}$
70. ECCENTRICITY - Find the eccentricity and identify the conic section
a. $r=\frac{7}{3-\frac{2}{5} \cos \theta}$
b. $r=\frac{4}{4+\frac{1}{4} \sin \theta}$

Module 7

71. $A=\{11,12.5,13,9,12.5\}$

$$
B=\{1.2,2.1,1.8,1.7,1.9\}
$$

a. Find the standard deviation of each set.
b. What is one standard deviation above A? Two below B?
72. Estimate the standard deviation for each
73. Does a larger standard deviation make the curve more wide or more narrow?

74. Explain the difference between a standard deviation of 1.2 versus a standard deviation of $\mathbf{3 4}$.
75. Identify each situation as a survey, observational study, or an experiment.
a) Stark Industries wants to know what their customer satisfaction is. They randomly select 123 customers and ask them.
b) To determine if the new Nike Frees make you run faster, the Nike team randomly assign people into two groups: Group 1 receives Nike Frees and group 2 receives a placebo (look-alike shoe). Both groups are timed and the results are compared.
c) To determine whether exercise raises test scores, researchers randomly selected a group of participants and recorded the number of hours each participant exercised and the rise or fall of their test scores.
76. Provide an example for each of the following
a. Simple random sample
b. Cluster random sample
c. Systematic random sample
d. Stratified random sample
77. A normal distribution of scores has a standard deviation of 10 . Find the z-scores corresponding to each of the following values:
a) A score that is 20 points above the mean.
b) A score that is 10 points below the mean.
c) A score that is 15 points above the mean
d) A score that is 30 points below the mean.
78. The Welcher Adult Intelligence Test Scale is composed of a number of subtests. On one subtest, the raw scores have a mean of 35 and a standard deviation of 6 . Assuming these raw scores form a normal distribution:
e) What number represents the $65^{\text {th }}$ percentile (what number separates the lower 65% of the distribution)?
f) What number represents the $90^{\text {th }}$ percentile?
g) What is the probability of getting a raw score between 28 and 38 ?
h) What is the probability of getting a raw score between 41 and 44 ?
79. Scores on the SAT form a normal distribution with $\mu=500$ and $\sigma=100$.
i) What is the minimum score necessary to be in the top 15% of the SAT distribution?
j) Find the range of values that defines the middle 80% of the distribution of SAT scores (372 and 628).
80. For a normal distribution, find the z -score that separates the distribution as follows:
k) Separate the highest 30% from the rest of the distribution.
I) Separate the lowest 40% from the rest of the distribution.
m) Separate the highest 75% from the rest of the distribution.

Module 8

81. The picture on the left shows the graph of a certain function. Based on that graph, answer the questions:
a) $\lim _{x \rightarrow-1^{-}} f(x)$
b) $\lim _{x \rightarrow-1^{+}} f(x)$
c) $\lim _{x \rightarrow 1} f(x)$
d) $\lim _{x \rightarrow 0} f(x)$

e) Is the function continuous at $x=-1$?
h) Is the function differentiable at $x=1$?
f) Is the function continuous at $x=1$?
i) Is $f^{\prime}(0)$ positive, negative, or zero?
g) Is the function differentiable at $x=-1$?
k) What is $f^{\prime}(-2)$?
82. Find each of the following limits (show your work):
a) $\lim _{x \rightarrow 3} 4 \pi$
b) $\lim _{x \rightarrow 3} \frac{x^{2}-2 x}{x+3}$
c) $\lim _{x \rightarrow 3} \frac{3-x}{x^{2}+2 x-15}$
d) $\lim _{x \rightarrow 1^{+}} \frac{x}{x-1}$
e) $\lim _{x \rightarrow 1^{-}} \frac{x}{x-1}$
f) $\lim _{x \rightarrow 1} \frac{x}{x-1}$
1) $\lim _{x \rightarrow-\infty} \frac{3 x^{2}-1}{2-3 x-4 x^{2}}$
m) $\lim _{x \rightarrow-\infty} \frac{3 x^{2}-1}{2-3 x}$
n) $\lim _{x \rightarrow \infty} \sqrt{x^{2}-1}-x$
83. Consider the following function: $f(x)=\left\{\begin{array}{lll}x^{2}, & \text { if } & x \geq 0 \\ x-2, & \text { if } & x<0\end{array}\right.$
a) Find $\lim _{x \rightarrow 0^{-}} f(x)$
b) Find $\lim _{x \rightarrow 0^{+}} f(x)$
c) Find $\lim _{x \rightarrow 2} f(x)$ (note that x approaches two, not zero)
d) Is the function continuous at $x=0$
f) Is $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-1}{x+1}, & \text { if } \quad x \neq-1 \\ 17 & \text { if } x=-1\end{array}\right.$ continuous at -1 ? If not, is the discontinuity removable?
g) Is there a value of k that makes the function g continuous at $x=0$? If so, what is that value?

$$
g(x)= \begin{cases}x-2, & \text { if } x \leq 0 \\ k(3-2 x) & \text { if } x>0\end{cases}
$$

84. Find the value of k, if any, that would make the following function continuous at $x=4$.
$f(x)=\left\{\begin{array}{cr}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ k & \text { if } x=2\end{array}\right.$
85. Use the definition of derivative to find the derivative of the function
a. $f(x)=3 x^{2}+2$.
b. $\quad f(x)=\frac{1}{1-x}$
c. $f(x)=\sqrt{x}$
86. Consider the function whose graph you see below, and find a number $x=c$ such that

a) f is not continuous at $x=a$
b) f is continuous but not differentiable at $x=b$
c) f^{\prime} is positive at $x=c$
d) f^{\prime} is negative at $x=d$
e) f^{\prime} is zero at $x=e$
f) f^{\prime} does not exist at $x=f$
87. Please find the derivative for each of the following functions (do not simplify unless you think it is helpful).
a. $f(x)=\pi^{2}+x^{2}+\sin (x)+\sqrt{x}$
b. $f(x)=x^{2}\left(x^{4}-2 x\right)$
c. $f(x)=x^{2}\left(x^{3}-\frac{1}{x}\right)$
d. $f(x)=3 x^{5}-2 x^{3}+5 x-\sqrt{2}$
e. $f(x)=\frac{x^{4}-2 x+3}{x^{2}}$
f. $f(x)=\sin ^{2}(x)$
88. Find the equation of the tangent line to the function at the given point:
a) $f(x)=x^{2}-x+1$, at $x=0$
b) $\quad f(x)=x^{3}-2 x$, at $x=1$
89. Suppose the function $f(x)=\frac{x^{4}-2 x+3}{x^{2}}$ indicates the position of a particle.
a) Find the velocity after 10 seconds
b) Find the acceleration after 10 seconds
c) When is the particle at rest (other than for $t=0$)
d) When is the particle moving forward and when backward
90. Sketch the graph of the derivative of each of the following functions on the same graph.

Draw a graph with the following conditions.

Function \#1

- $f(0)=0$
- $f(1)=2$

$$
\text { - } \quad \lim _{x \rightarrow-\infty} f(x)=-1
$$

- $f(-1)=-2$
- at $f(3)$ there is a non-removable discontinuity

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

- at $\mathrm{f}(-4)$ there is a removable discontinuity

Function \#2

- $\lim _{x \rightarrow \infty} f(x)=0$
- $\quad \lim _{x \rightarrow 0^{+}} f(x)=2$
- $\lim _{x \rightarrow-\infty} f(x)=0$
- $\quad \lim _{x \rightarrow 0^{-}} f(x)=-2$
- $f(0)=0$
- at $\mathrm{f}(-4)$ there is a removable discontinuity
- $\lim _{x \rightarrow 2} f(x)$ exists, but the graph is discontinuous

Function \#3

- $\lim _{x \rightarrow \infty} f(x)=0$
- $\quad \lim _{x \rightarrow 1^{+}} f(x)=-\infty$
- $\lim _{x \rightarrow-\infty} f(x)=0$
- $\quad \lim _{x \rightarrow-1^{-}} f(x)=-\infty$
- $f(0)=0$
- $\quad \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=\infty$
- $\lim _{x \rightarrow 4} f(x)$ exists, but the graph is discontinuous

Function \#4

- $\lim _{x \rightarrow \infty} f(x)=0$
- $\quad \lim _{x \rightarrow 0^{+}} f(x)=\infty$
- $\lim _{x \rightarrow-\infty} f(x)=1$
- $\quad \lim _{x \rightarrow 0^{-}} f(x)=-\infty$
- $f(-1)=0$
- $\quad f(2)=1$
- $\lim _{x \rightarrow 1} f(x)$ does not exist

Function \#5

- $f(-3)=0$
- $\quad f(0)=3$
- $\lim _{x \rightarrow \infty} f(x)=-1$
- $\quad \lim _{x \rightarrow-4^{+}} f(x)=\infty$
- $\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{-}} f(x)=\infty$
- at $f(5)$ there is a removable discontinuity
- $\lim _{x \rightarrow 1} f(x)$ does not exist

		-					-			
										\square

Function \#6

- $\lim _{x \rightarrow 0^{+}} f(x)=3$
- $\quad \lim _{x \rightarrow-4^{+}} f(x)=-\infty$
- $\lim _{x \rightarrow 0^{-}} f(x)=-3$
- $\quad \lim _{x \rightarrow 4^{-}} f(x)=\infty$
- $f(0)=1$
- $\lim _{x \rightarrow 1} f(x)$ exists, but the graph is discontinuous

Function \#7

- $f(0)=0$
- $\quad \lim _{x \rightarrow \infty} f(x)=-1$
- $f(2)=1$
- $\quad \lim _{x \rightarrow-4^{+}} f(x)=-\infty$
- $f(-2)=-4$
- $\lim _{x \rightarrow-1} f(x)$ does not exist

- $\lim _{x \rightarrow 1} f(x)$ exists, but the graph is discontinuous

Function \#8

- $\lim _{x \rightarrow \infty} f(x)=1$

$$
\begin{aligned}
& \quad \lim _{x \rightarrow-\infty} f(x)=1 \\
& \lim _{x \rightarrow 3^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow-3^{-}} f(x)=\infty
\end{aligned}
$$

- $\lim _{x \rightarrow 3^{+}} f(x)=-\infty$
- $\lim _{x \rightarrow-3^{+}} f(x)=-\infty$
- $\mathrm{f}(0)=2$
- at $\mathrm{f}(-5)$ there is a non-removable discontinuity

