Integrated Math 1 Honors Module 11H Exponents Ready, Set, Go! Homework Solutions

Adapted from

The Mathematics Vision Project: Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, Janet Sutorius

© 2013 Mathematics Vision Project | MVP In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

Ready, Set, Go!

Ready

Topic: Comparing additive and multiplicative patterns.

The sequences below exemplify either an additive (arithmetic) or a multiplicative (geometric) pattern. Identify the type of sequence, fill in the missing values on the table and write an equation.

1.

Term	1 st	2 nd	3 rd	4^{th}	5^{th}	6^{th}	7 th	8 th
Value	-3	9	-27	81	-243	729	-2187	6561

Type of Sequence: Geometric

Equation:
$$f(n) = (-3)^n$$

2.

Term	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
Value	160	80	40	20	10	5	5 2	5 4

Type of Sequence:

Equation:

Geometric

 $f(n) = 320 \left(\frac{1}{2}\right)^n$ or $f(n) = 160 \left(\frac{1}{2}\right)^{x-1}$

3.

Term	1 st	2^{nd}	3 rd	4 th	5^{th}	6 th	7^{th}	8 th
Value	-9	-2	5	12	19	26	33	40

Type of Sequence: Arithmetic Equation: f(n) = 7n - 16 or f(n) = 7(n - 1) - 9

Use the graph of the function to find the desired values of the function. Also create an explicit equation for the function.

- 4. Find the value of f(2)2
- 5. Find where f(x) = 4x = 4
- 6. Find the value of f(6)8
- 7. Find where f(x) = 16x = 8
- 8. What do you notice about the way that inputs and outputs for this function relate? (Create an in-out table if you need to.)

exponential

9. What is the explicit equation for this function? $f(x) = 2^{(x/2)}$

Set

Topic: Evaluate the expressions with rational exponents.

Fill in the missing values of the table based on the growth that is described.

10. The growth in the table is **triple** at each whole year.

Years	0	$\frac{1}{2}$	1	3 2	2	<u>5</u> 2	3	7 2	4
Bacteria	2	$2\sqrt{3}$	6	6 √ 3	18	18√3	54	$54\sqrt{3}$	162

11. The growth in the table is **triple** at each whole year.

Years	0	$\frac{1}{3}$	$\frac{2}{3}$	1	$\frac{4}{3}$	<u>5</u> 3	2	$\frac{7}{3}$	<u>8</u> 3
Bacteria	2	$2\sqrt[3]{3}$	2 ³ √9	6	$6\sqrt[3]{3}$	6∛9	18	18∛3	18∛9

12. The values in the table grow by a **factor of four** at each whole year.

Years	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1	$\frac{5}{4}$	$\frac{3}{2}$	$\frac{7}{4}$	2
Bacteria	2	$2\sqrt[4]{4}$	$2\sqrt[4]{16}$	$2\sqrt[4]{64}$	8	$8\sqrt[4]{4}$	$8\sqrt[4]{16}$	$8\sqrt[4]{64}$	32
	OR	2√2	4	4√2	8	8√2	16	16√2	32

Go

Topic: Simplifying exponents

Simplify the following expressions using exponent rules and relationships. Write your answers with positive exponents only.

13.
$$(3x^2)^3$$

 $27x^6$
14. $\frac{x^4y^9}{xy^3}$
 x^3y^6
15. x^{-5}
 $\frac{1}{x^5}$
16. $(2x^0y^7)(3x^6y^4)^2$
 $17. \frac{4x^3y^8}{24x^9y^{12}}$
 $18. \frac{8x^{-3}y^5}{32x^{-7}y^{-2}}$
 $\frac{1}{6x^6y^4}$
18. $\frac{x^4y^7}{4}$

Write each quadratic function in vertex and factored forms.

$19. f(x) = x^2 - 10x + 16$	20. $f(x) = x^2 + 6x - 27$
Vertex Form: $f(x) = (x - 5)^2 - 9$	Vertex Form: $f(x) = (x + 3)^2 - 36$
Factored Form: $f(x) = (x - 8)(x - 2)$	Factored Form: $f(x) = (x + 9)(x - 3)$

21. $f(x) = x^2 + 16x + 60$	22. $f(x) = (x - 4)^2 - 81$
Vertex Form: $f(x) = (x + 8)^2 - 4$	Vertex Form: $f(x) = (x - 4)^2 - 81$
Factored Form: $f(x) = (x + 10)(x + 6)$	Factored Form: $f(x) = (x - 13)(x + 5)$

Ready, Set, Go!

Ready

Topic: Simplifying radicals

A very common radical expression is a square root. One way to think of a square root is the number that will multiply by itself to create a desired value. For example: $\sqrt{2}$ is the number that will multiply by itself to equal 2. And in like manner $\sqrt{16}$ is the number that will multiply by itself to equal 16; in this case the value is 4 because $4 \times 4 = 16$. When the square root of a square number is taken you get a nice whole number value. Otherwise an **irrational** number is produced.

This same pattern holds true for other radicals such as cube roots and fourth roots and so forth. For example: $\sqrt[3]{8}$ is the number that will multiply by itself three times to equal 8. In this case it is equal to the value of 2 because $2^3 = 2 \cdot 2 \cdot 2 = 8$.

With this in mind, radicals can be simplified. See the examples below.

Simplify each of the radicals.

1.	$\sqrt{40}$	2.	$\sqrt{32}$	3.	3√16	4.	$\sqrt{72a^4}$
	$2\sqrt{10}$		$4\sqrt{2}$		$2\sqrt[3]{2}$		$6a^2\sqrt{2}$
5.	$\sqrt[3]{54x^4}$	6.	$\sqrt[4]{81y^{10}}$	7.	⁵ √160 <i>b</i>		
	$3x\sqrt[3]{2x}$		$3y^2\sqrt[4]{y^2}$		2 ⁵ √5 <i>b</i>		

Set

Topic: Finding arithmetic and geometric means and making meaning of rational exponents.

You may have found arithmetic and geometric means in your prior work. Finding **arithmetic and geometric means** requires finding values of a sequence between given values from non-consecutive terms. In each of the sequences below determine the means and show how you found them.

Find the *arithmetic* **means for the following. Show your work.** 8.

X	1	2	3
у	5	8	11

9.

X	1	2	3	4	5
у	18	11	4	-3	-10

10.

X	1	2	3	4	5	6	7
у	12	9	6	3	0	-3	-6

Find the *geometric* means for the following. Show your work.

11.

X	1	2	3
у	3	6	12

12.

X	1	2	3	4
у	7	35	175	875

13.

X	1	2	3	4	5	6
у	4	12	36	108	324	972

Fill in the tables of values and find the factor (multiplier) used to move between whole number values, F_w , as well as the factor (multiplier), F_c , used to move between each column of the table.

values, Γ_w , as well as the la

Find the desired values for each function below.

17.
$$f(x) = 2x - 7$$
 18. $g(x) = 3^{x}(2)$

 a. Find $f(-3)$
 a. Find $g(-4)$
 -13
 $\frac{2}{81}$

 b. Find x if $f(x) = 21$
 b. Find x if $g(x) = 162$
 $x = 14$
 c. Find $f\left(\frac{1}{2}\right)$
 -6
 c. Find $g\left(\frac{1}{2}\right)$
 -6
 c. Find $g\left(\frac{1}{2}\right)$
 $2\sqrt{3} \approx 3.4641$

 19. $I(t) = 210(1.08^{t})$
 20. $h(x) = x^{2} + x - 6$

 a. Find $I(12)$
 a. Find $h(-5)$
 ≈ 528.82
 14

 b. Find t if $I(t) = 420$
 b. Find x if $h(x) = 0$
 $t \approx 9$
 $x = -3, 2$

 c. Find $I\left(\frac{1}{2}\right)$
 $-\frac{21}{4}$

Topic: Finding *x*-intercepts of quadratic functions

Find the *x*-intercepts of each quadratic function using the method stated. 21. Quadratic formula: $f(x) = 9x^2 + 4x - 16$ 22. Completing the square: $f(x) = x^2 - 12x + 26$

$$x = \frac{-2 \pm 2\sqrt{37}}{9} \qquad \qquad x = 6 \pm \sqrt{10}$$

23. Factoring:
$$f(x) = 3x^2 - 11x + 10$$

24. Completing the square: $f(x) = 9x^2 - 18x + 8$

$$x = \frac{5}{3}, 2$$
 $x = \frac{4}{3}, \frac{2}{3}$

Simplify each expression as much as possible. Leave answers with positive exponents only.

25. $(3x^2y^8)(-4x^2y^6)^3$	$26. \frac{18x^{-7}y^{-2}}{24x^{-5}y^6}$
$-192x^8y^{26}$	$\frac{3}{4x^2y^8}$
27. $(5x^2y^9)^0(-4x^5y^{-6})^2$	$28. \left(\frac{12x^4y^8}{36x^9y^{-2}}\right) \left(\frac{20x^3y^{-4}}{35x^{-10}y}\right)$
$\frac{16x^{10}}{y^{12}}$	$\frac{4x^8y^5}{21}$

Ready

Topic: Exponent properties

Provide at least three other equivalent forms of the exponential expression. Use rules of exponents such as $3^5 \cdot 3^6 = 3^{11}$ and $(5^2)^3 = 5^6$ as well as division properties and others.

	1 st Equivalent Form	2 nd Equivalent Form	3 rd Equivalent Form
1. 2 ¹⁰	Answers will vary		
2. 3 ⁷			
3. 13 ⁻⁸			
4. $7^{\frac{1}{3}}$			
5. 5 ¹			

Set

Topic: Finding equivalent expressions

Determine whether all three expressions in each problem below are equivalent. Justify why or why they are not equivalent.

6.	$5(3^{x-1})$	$15(3^{x-2})$	$\frac{3}{3}(3^{x})$
		$5\cdot 3^{x-1}$	$5^{-1} \cdot 3^{x+1}$

Justification:

Only the 1st and 2nd expressions are equivalent. The exponents on the 3rd are different due to the fraction and the additive nature of the exponents for the terms with a base of 3.

7	$64(2^{-x})$	64	$(1)^{x}$
/.	64	$\overline{2^x}$	$64\left(\frac{-}{2}\right)$
	$\frac{3}{2x}$		64
	2		$\overline{2^x}$
	Justification:		
	A11.0	a second	and the second data and the second data and the second second second second second second second second second

All 3 expressions are equivalent since the 1st term can be written with a positive power and the 3rd expression can have the $\left(\frac{1}{2}\right)^x$ be rewritten as $\frac{1}{2x}$.

8.	3(x-1) + 4 3x + 1	3x - 1	3(x-2) + 7 3x + 1
	Justification: Only the 1 st and 3 rd expre combining like terms) to	ssions are equivalent since t $3x + 1$.	hey both simplifying (by distributing &
9.	$50(2^{x+2}) \\ 5^2 \cdot 2^{x+3}$	$25(2^{2x+1}) \\ 5^2 \cdot 2^{2x+1}$	$50(4^{x}) \\ 5^{2} \cdot 2^{2x+1}$
	Justification: Only the 2 nd and 3 rd expre exponent on the term wit	essions are equivalent since t h a base of 2.	the first term doesn't have the same
10.	30(1.05 ^x)	$30\left(1.05^{\frac{1}{7}}\right)^{7x}$ 30(1.05^x)	$30\left(1.05^{\frac{x}{2}}\right)^{2}$ 30(1.05^{x})
	Justification: All expressions are equivalent		
11.	$20(1.1^{x})$	$20(1.1^{-1})^{-1x}$ 20(1.1 ^x)	$20 \left(1.1^{\frac{1}{5}}\right)^{5x}$ 20(1.1^x)
	Justification: All expressions are equivalent		

12

Go

Topic: Using rules of exponents

Simplify each expression. Write your answers with positive exponents only.

Topic: Writing quadratic function in vertex form.

Write each quadratic function in vertex form by completing the square.		
$18. f(x) = x^2 - 16x + 68$	19. $f(x) = -x^2 - 4x - 13$	
$f(x) = (x - 8)^2 + 4$	$f(x) = -(x+2)^2 - 9$	

20.
$$f(x) = 2x^2 + 12x + 30$$

21. $f(x) = -3x^2 + 24x - 40$

$$f(x) = 2(x+3)^2 + 12 \qquad \qquad f(x) = -3(x-4)^2 + 8$$

Ready, Set, Go!

Ready

Topic: Factoring quadratics

W	Write each of the quadratic expressions in factored form.					
1.	$2x^2 + 3x + 1$	2.	$x^2 - 5x - 6$	3. $x^2 + x - 12$		
	(2x+1)(x+1)		(x-6)(x+1)	(x+4)(x-3)		

4. $2x^2 - 5x - 12$ 5. $6x^2 - 7x - 5$ 6. $49x^2 - 4$ (2x + 3)(x - 4)(3x - 5)(2x + 1)(7x - 2)(7x + 2)

7. $x^4 + 6x^2 + 5$	8. $x^4 - 81$
$(x^2+5)(x^2+1)$	$(x+1)(x-1)(x^2+1)$

Topic: Simplifying radicals

implify each radical as much as possible.				
9. $\sqrt{560}$	10. √ 972	11. $\sqrt{1050}$		
4 √ 35	18 √3	5\sqrt{42}		
12. ∛648	13. ∛640	14. ∛ 3584		
$6\sqrt[3]{3}$	$4\sqrt[3]{10}$	8 ³ √7		

Set

Topic: Radical notation and rational exponents

	Radical Form	Exponential Form
15.	³ √5 ²	5 ² / ₃
16.	$\sqrt[4]{16^3}$	$16^{3/4}$
17.	$\sqrt[3]{5^7 \cdot 3^5}$	5 ⁷ / ₃ . 3 ⁵ / ₃
18.	$\sqrt[3]{9^2 \cdot 9^4}$	$9^{2}/_{3} \cdot 9^{4}/_{3}$
19.	$\sqrt[5]{x^{13}y^{21}}$	$x^{13}/_5y^{21}/_5$
20.	$\sqrt[3]{27a^5b^2}$	$27^{1/3}a^{5/3}b^{2/3}$
21.	$\sqrt[5]{\frac{32x^{13}}{243y^{15}}}$	$\frac{32^{1/5}x^{13/5}}{243^{1/5}y^{15/5}}$
22.	$\sqrt{9^3t}\cdot\sqrt[3]{s^6}$	$9^{3/2} \cdot s^{6/3} \cdot t^{1/2}$

Each of the expressions below can be written using either radical notation, $\sqrt[n]{a^m}$, or rational exponents $a^{m/n}$. Rewrite each of the given expressions in the form that is missing.

Topic: Solving equations with exponents

Solve the equations below, use radicals or rational exponents as needed.

23.
$$(x+5)^4 = 81$$

 $x = -2, -8$
24. $2(x-7)^5 + 3 = 67$
 $x = 9$

25.
$$(x-7)^3 = 8$$

26. $2(x+4)^3 = 162$

$$x = 9 \qquad \qquad x = -4 + 3\sqrt[3]{3}$$

27.
$$5(x+2)^3 = 540$$

 $x = -2 + 3\sqrt[3]{4}$
28. $4(x-8)^5 = 384$
 $x = 8 + 2\sqrt[5]{3}$

Go

Topic: *x*-intercepts and *y*-intercepts for linear, exponential and quadratic functions

Given the function, find the *x*-intercept(s) and *y*-intercept if they exist and then use them to graph a sketch of the function.

